# EVALUATING A STRATEGY TO ENHANCE BIODIVERSITY OVER A 426-HA PRAIRIE RESTORATION AFTER 10 YEARS



### Abstract

Restoring high levels of biological diversity in landscape restoration work is critical to reestablishing many important ecological functions. In large restorations, this often presents a significant challenge in that seed acquisition is often limited by either financial resources or availability, or both, especially for rare species or those producing little seed. To increase diversity across 426 ha of wet to dry prairie in a 1,113 ha restoration in northern Illinois, 89 species were planted in 60 30-m diameter 'nodes of diversity' to enhance a base seeding of 61 matrix species through ongoing dispersal. Twenty eight nodes were planted with 54 wet prairie species (wet species), 26 nodes with 48 mesic prairie species (mesic species), and six nodes with 33 dry prairie species (dry species). Dispersal potential of node species ranged from low (e.g. gravity dispersal) to high (e.g. wind or animal-vector dispersal). After 10 growing seasons, each node was assessed for species establishment and abundance, with occurrence and abundance assessed in consecutive rings outside each node at 5-m increments to determine if dispersal from nodes was a viable means of increasing diversity across the restoration site.

Eighty node species established in at least one node, with 94.0 % of wet, 79.2 % of mesic, and 87.9 % of dry species found. Nodes averaged 13.7 species in wet prairie, 12.8 species in mesic prairie, and 17.3 species in dry prairie. Not all established species successfully dispersed: 43 % of wet, 45% of mesic, and 46 % of dry species established in the first 5-m ring outside the nodes; 23 % of wet species, 27 % of mesic species, and 30 % of dry species established in the second ring, and 8% of wet species, 8 % of mesic species, and 28 % of dry species established in the third ring.

Establishment potential following dispersal was unrelated to dispersal potential, as no differences were found among the three dispersal potential classes in the proportion of established species that dispersed within any of the three habitat type. However, based on casual monitoring, species with higher dispersal potential did establish well beyond the 60-m diameter area surveyed at each node, but at densities too low to effectively sample, or to make diversity nodes a viable strategy to increase diversity *evenly* across the site over a 10-year period. However, the nodes were successful in introducing species where little seed was affordable or available in densities that promoted the establishment and expansion of viable populations. These nodes now serve as a focus for seed collection for ongoing introductions elsewhere.

## Introduction

A general consensus has developed that a positive relationship exists between biological diversity and ecological function (Hooper and Vitousek 1997, Zedler et al. 2001, Cardinale 2002, Lambers et al. 2004, Hooper et al. 2005, Balvanera et al. 2006, Tilman et al. 2006, Hillebrand and Matthiessen 2009, Quijas et al. 2010, Hector et al. 2011, Morin et al. 2011, Midgley 2012, Quijas et al. 2012, Turnbull et al. 2012). From a conservation perspective, particularly in regard to the restoration of globally rare landscapes such as tallgrass prairie, restoring high levels of biological diversity is critical to establishing and maintaining ecological function in developing ecosystems (Schwartz et al. 2000, Callaway 2003, Naeem 2006, Duffy 2009, Webster et al. 2010, Biondini et al. 2011, Isbell et al. 2011, Symstad and Jonas 2011, Tilman et al. 2012, Isbell et al. 2013). One of the most difficult challenges restoring plant species diversity in large-scale restoration is to acquire a sufficient quantity of native plant propagules for each species targeted for reintroduction. Many species that once characterized native landscapes may not be available as they are locally extirpated or rare, and/or they produce very little seed (Howe 1994, Polley et al. 2005). Many species that are not particularly rare within their native habitat may still be difficult or expensive to acquire if little of their habitat remains (Packard 1997). In large restorations, seed acquisition is often limited by both financial resources and availability, especially of rare species or those producing little seed (Rowe 2010, Larson et al. 2011).

To increase prairie species diversity across 426 ha being restored as wet-, mesic-, and dry prairie, we planted 60 730 m<sup>2</sup> diversity 'nodes' to enhance the matrix of species planted in each of the three prairie habitats through species dispersal over a 10 year period. Our goal was to determine:

- 1) Can the introduction of species in diversity nodes be used as an effective strategy to increase species diversity outside the nodes through ongoing dispersal across a restoration site?
- 2) Are species with higher dispersal potential better at establishing beyond the diversity nodes?
- 3) Are some species better than others at both establishing in nodes and dispersing across the site?

### Methods

In 2001, restoration efforts began on 1,113 ha of land that had been planted in corn and soybeans since 1909 to a landscape mosaic of lakes, wetlands, savanna, forest, and prairie (the Sue and Wes Dixon Waterfowl Refuge at Hennepin & Hopper Lakes, now a RAMSAR wetland of international importance). Because of finite financial resources and the inherent scarcity of some species, one of the primary challenges was to acquire sufficient seed to establish high levels of plant diversity on the 426 ha being restored. A matrix of 61 species was planted across the three types of prairie, with each type identified on the landscape based on topography, soil characteristics, and projected hydrology. Species were introduced from seed through 'frost seeding', i.e., seed was planted in late autumn once nights were cold enough to produce frost-heaving, which combined with daytime melting naturally worked seed into exposed mineral soil.

As a strategy to enhance prairie species diversity, 60 30-m diameter 'nodes' of diversity (each 730 m<sup>2</sup>; Figure 1) were planted with 89 additional species: 28 nodes with 50 wet prairie species (wet species), 26 nodes with 48 mesic prairie species (mesic species), and six nodes with 33 dry prairie species (dry species). The number of nodes was proportional to the area of each type of prairie planted. Nodes were located across the landscape objectively to insure that at least one node was found in each contiguous section of prairie habitat, i.e., each discrete habitat unit had at least one node from which node species could potentially disperse (Figure 2). Consequently, node density was related to the spatial distribution of all habitats across the landscape mosaic. Each node was marked with a steel stake and the coordinates recorded with GPS. The quantity of seed per species varied among species in each node based on cost and availability (Table 1), but in all cases was much less than that of the matrix species planted.

The dispersal potential of each node species was subjectively assigned to one of three dispersal classes based on their physical characteristics. Species ranged from low potential (e.g. gravity dispersal with the heavy round seeds of *Baptisia leucantha*) to high potential (e.g. wind dispersal aided by the fluffy pappus on seeds of Asclepias tuberosa, or animal-vector dispersal with the sticky seeds of *Desmodium illinoense*). Some species were categorized as intermediate due to seed characteristics that appear to promote longer dispersal under specific conditions, e.g. the fine seeds of Penstemon digitalis which are shaken from capsules in wind. After 10 growing seasons, each node was assessed for species establishment and abundance, with abundance assessed in consecutive rings outside each node at 5-m increments to determine if dispersal from nodes was a viable means of increasing diversity evenly across the restoration site. Of the 60 nodes planted in 2002, 53 were sampled in 2012: 26 wet, 23 mesic, and four dry (seven were lost, e.g. one suffering an invasion of Canada thistle was eradicated). Differences among species with different dispersal potentials were assessed with a non-parametric Kruskal-Wallis test, with post hoc Bonferroni pairwise comparisons calculated to assess differences among percent-dispersal means.



Figure 1. Layout of 730 m<sup>2</sup> diversity nodes planted in 2002 (15-m diameter circle, in green), with consecutive rings at 5 m intervals that were sampled to record dispersal outside each node (rings at 15 to 20-, 20 to 25-, and 25 to 30 m from center).



Figure 2. Distribution of 53 30-m diameter diversity nodes surveyed in 426 ha of wetmesic-, and dry prairie in 2002 at the 1,113-ha Sue and Wes Dixon Waterfowl Refuge at Hennepin & Hopper Lakes.

Eighty node species established in at least one node, with 94.0 % of wet, 79.6 % of mesic, and 78.4 % of dry species found. Nodes averaged 13.7 species in wet prairie, 12.8 species in mesic prairie, and 17.3 species in dry prairie. Not all species that established successfully within each node dispersed (Table 2). Fewer numbers of species dispersed into each consecutive ring surveyed outside the nodes, and most species were not found more than 15 m beyond the outer edge of the nodes, indicating that most dispersal after 10 years was relatively short distance. There was a notable exception in the wet prairie habitat where two species (*Desmanthus illinoense* and *Bidens aristosa*) established in high densities within the footprint of a few surface drainage ways that resulted in longer term moist soil conditions. These species have colonized large portions of the site where those specific conditions have been found. One unexpected outcome was the greater number of species established in dry prairie nodes and the greater proportion of dry prairie species that dispersed into each consecutive ring surveyed despite the generally low recruitment observed in dry prairie in moderate to dry years.

**Table 2**. The mean proportion of established species that dispersed to each consecutive ring surveyed outside the nodes within each habitat.

Some species did not establish anywhere and others that did establish failed to disperse outside the nodes, while some species were quite good at recruitment as more individuals were found outside the nodes than within (Table 3). Some of these species are relatively conservative and most likely encountered in less-disturbed communities, such as *Liatris pycnostachya* or *Echinacea pallida*, indicating that at least some conservative species can be introduced at lower densities and still populate a restoration. This appears to have happened more consistently around wet habitat nodes, perhaps where soil moisture was less of a constraint to recruitment than in the drier areas. This further suggests a subset of species that could be planted from seed in lower densities, while other species that might be better introduced as plugs.

**Gary Sullivan**<sup>1</sup>, William Sluis<sup>2</sup>, Izabella Redlinski<sup>1</sup> <sup>1</sup> The Wetlands Initiative, Chicago, IL, USA <sup>2</sup> Trine University, Angola, IN, USA

seed / node

12,857

8,100

934 1,229

2,000

4,571 16,071

19,643

5.714

3,571 2,250

20,527

1,500 1,571

176

411

6,714 10,045 1,429

17,143 12,857

357

625 83,571

6,429

23,821 134

10,714

3,143

7,429 800

651 493

Table 1. Identity and quantity of seed for each species planted in a wet-, mesic, or dry prairie diversity node. Note that some species appear in more than one

| Wet | prairie | node |
|-----|---------|------|
|     |         |      |

| wet species                   | seed /<br>node | mesic species             | seed /<br>node | dry species                |  |
|-------------------------------|----------------|---------------------------|----------------|----------------------------|--|
| galinus purpurea              | 10,714         | Allium cernuum            | 3,691          | Allium stellatum           |  |
| Illium cernuum                | 3,257          | Asclepias sullivantii     | 83             | Antennaria plantaginifolia |  |
| sclepias incarnata            | 86             | Baptisia leucantha        | 911            | Asclepias hirtella         |  |
| sclepias sullivantii          | 115            | Baptisia leucophaea       | 120            | Asclepias tuberosa         |  |
| ster praealtus                | 1,021          | Bouteloua curtipendula    | 5,357          | Aster sericeus             |  |
| Baptisia leucantha            | 911            | Bromus kalmii             | 9,821          | Astragalus canadensis      |  |
| Bidens aristosa               | 321            | Carex bicknellii          | 300            | Bouteloua curtipendula     |  |
| Bidens coronata               | 446            | Cassia marilandica        | 971            | Bromus kalmii              |  |
| Boltonia asteroides           | 25,313         | Coreopsis tripteris       | 1,250          | Carex bicknellii           |  |
| Cacalia plantaginea           | 54             | Dalea candida             | 10,179         | Carex muhlenbergii         |  |
| Carex buxbaumii               | 189            | Dalea purpurea            | 2,571          | Coreopsis lanceolata       |  |
| Cicuta maculata               | 321            | Desmanthus illinoensis    | 750            | Coreopsis palmata          |  |
| Coreopsis tripteris           | 1,250          | Desmodium canadense       | 381            | Coreopsis tripteris        |  |
| Desmanthus illinoensis        | 750            | Desmodium Illinoense      | 768            | Dalea candida              |  |
| Desmodium canadense           | 454            | Dodecatheon meadia        | 1,071          | Desmanthus illinoensis     |  |
| leocharis erythropoda         | 583            | Echinacea pallida         | 3,714          | Desmodium canadense        |  |
| leocharis obtusa              | 357            | Euphorbia corollata       | 429            | Desmodium illinoensis      |  |
| Sentiana andrewsii            | 2,690          | Gentiana andrewsii        | 2,640          | Echinacea pallida          |  |
| lelenium autumale             | 4,643          | Gentiana flavida          | 5,000          | Euphorbia corollata        |  |
| lypericum pyramidatum         | 33,750         | Gentiana puberulenta      | 6,214          | Helianthus rigidus         |  |
| ris virginicus                | 89             | Helianthus rigidus        | 205            | Hypericum sphaerocarpo     |  |
| uncus dudleyi                 | 8,929          | Heuchera richardsonii     | 2,500          | Koeleria cristata          |  |
| uncus effusus                 | 35,714         | Hypericum pyramidatum     | 33,750         | Lespedeza capitata         |  |
| uncus torreyi                 | 2,857          | Hypericum sphaerocarpon   | 3,357          | Liatris aspera             |  |
| iatris pycnostachya           | 1,286          | Koeleria cristata         | 5,022          | Monarda punctata           |  |
| obelia spicata                | 1,527          | Liatris aspera            | 10,000         | Panicum leibergii          |  |
| ycopus americanus             | 3,872          | Liatris pycnostachya      | 1,286          | Parthenium integrifolium   |  |
| ycopus uniflorus              | 30,179         | Parthenium integrifolium  | 750            | Penstemon digitalis        |  |
| ysimachia quadriflora         | 4,259          | Pedicularis canadensis    | 943            | Penstemon pallidus         |  |
| ythrum alatum                 | 18,214         | Physostegia virginiana    | 209            | Potentilla arguta          |  |
| Aentha arvensis               | 10,714         | Potentilla arguta         | 12,321         | Rosa carolina              |  |
| /imulus ringens               | 44,768         | Pycnanthemum pilosum      | 3,304          | Solidago nemoralis         |  |
| arthenium integrifolium       | 500            | Pycnanthemum virginianum  | 92,714         | I radescantia ohiensis     |  |
| hysostegia virginiana         | 273            | Rosa carolina             | 134            |                            |  |
| Pycnanthemum virginianum      | 91,143         | Silphium integrifolium    | 386            |                            |  |
| Rosa carolina                 | 134            | Silphium perfoliatum      | 150            |                            |  |
| Rudbeckia fulgida sullivantii | 3,654          | Silphium laciniatum       | 1,850          |                            |  |
| Rudbeckia triloba             | 5,009          | Silphium terebinthinaceum | 1,000          |                            |  |
| Scirpus atrovirens            | 348,286        | Sisyrinchium albidum      | 1,367          |                            |  |
| Scirpus pendulus              | 8,957          | Solidago graminifolia     | 2,500          |                            |  |
| Scirpus validus               | 1,107          | Solidago juncea           | 7,857          |                            |  |
| Senecio pauperculus           | 1,250          | Solidago nemoralis        | 5,357          |                            |  |
| Silphium integrifolium        | 386            | Solidago riddellii        | 9,964          |                            |  |
| Silphium laciniatum           | 1,084          | Solidago speciosa         | 1,357          |                            |  |
| Silphium perfoliatum          | 150            | Tradescantia ohiensis     | 857            |                            |  |
| Silphium terebinthinaceum     | 1 000          | Vernonia fasciculata      | 4 371          |                            |  |
| Solidado graminifolia         | 2 500          | Veropicastrum virginicum  | 57 286         |                            |  |
|                               | 9 96/          | Zizea aurea               | 1 768          |                            |  |
|                               | 6 420          |                           | 1,700          |                            |  |
|                               | 1.004          |                           |                |                            |  |
|                               | 1,904          |                           |                |                            |  |
|                               | /14            |                           |                |                            |  |
| remonia fasciculata           | 5,229          |                           |                |                            |  |
| eronicastrum virginicum       | 57,286         |                           |                |                            |  |
| izea aurea                    | 1 768          |                           |                |                            |  |

| Mesic prairie node              |
|---------------------------------|
| 10 - 1                          |
|                                 |
| Dry prairie node being surveyed |



### **Results and Discussion**

| habitat | 15-20m | 20-25m | 25-30m |
|---------|--------|--------|--------|
| wet     | 0.430  | 0.225  | 0.078  |
| mesic   | 0.449  | 0.270  | 0.081  |
| dry     | 0.457  | 0.301  | 0.278  |

There were significant differences among the three dispersal potential classes in the proportion of species planted that established across all habitat types (Figure 3). A significantly smaller proportion of species established that were ranked in the highest dispersal potential class, with the greatest proportion of species establishing within the nodes from the group ranked as intermediate in dispersal potential (intermediate > low > high). However, there were no differences among the three dispersal potential classes in the proportion of planted species that dispersed outside the nodes, suggesting that dispersal potential (as defined in this experiment) is not a good predictor of successful establishment following dispersal. Since successful dispersal (establishment following dispersal) was not related to dispersal mechanism, the choice of species for introduction at lower densities (to disperse and increase from recruitment) should be independent of dispersal mechanism, and based on the characteristics of individual species and how they interact with a given site.

**Figure 3.** Box plot of the proportion of each species planted that established from each dispersal potential class across all habitat types (A), with a box plot of the proportion of species planted that dispersed outside the nodes among the three dispersal potential classes (B). Overall differences among means assessed with a Kruskal-Wallis analysis, with differences among means assessed with post hoc Bonferroni pairwise comparisons



No differences were found among the three dispersal potential classes in the proportion of established species that dispersed within any of the three habitat types (Table 4, Figure 4). Although the mean proportion of species that dispersed from each dispersal potential class differed among nodes, success varied widely among nodes and appeared to be strongly influenced by local conditions unrelated to species or group identity. Not all wet prairie nodes were equally wet, nor dry prairie nodes equally dry. Soil characteristics varied among nodes as well (e.g. sandy vs. clayey), leading to differences in the conditions influencing successful establishment. Likely of equal importance was local community dynamics, which varied widely in both invasive pressure, and the relative densities of and among established species. This again suggests that dispersal mechanism is not a good predictor of successful establishment following dispersal locally, despite some species having a greater potential for long distance dispersal.

**Table 3.** Mean ratio of dispersed to established individuals (D = number dispersed outside the node / number established within the node) for each wet-, mesic-, and dry prairie species. No value indicates that no individuals established, while 0.000 means that no individuals dispersed outside the node.

| wet species                | D     | mesic species                             | D     | dry species                | D     |
|----------------------------|-------|-------------------------------------------|-------|----------------------------|-------|
|                            | 4 868 | Desmodium canadense                       | 8 603 | Penstemon digitalis        | 1 820 |
| Solidado graminifolia      | 4.000 | Liatris pycnostachya                      | 1 208 | Boutelous curtipendula     | 1 364 |
| Liatris pycnostachya       | 2 269 | Desmanthus illinoensis                    | 0.942 | Desmodium illinoensis      | 1.004 |
| Silphium perfoliatum       | 1 776 | Vernonia fasciculata                      | 0.882 | Echinacea pallida          | 1.071 |
| Silphium integrifolium     | 1.387 | Desmodium Illinoense                      | 0.820 | Carex mublenbergii         | 0.917 |
| Desmanthus illinoensis     | 1.329 | Coreopsis tripteris                       | 0.669 | Monarda punctata           | 0.833 |
| Bidens aristosa            | 1 243 | Asclepias sullivantii                     | 0.647 | Koeleria cristata          | 0.617 |
| Mentha arvensis            | 0.833 | Dalea purpurea                            | 0.630 | Penstemon pallidus         | 0.563 |
| Lycopus americanus         | 0.798 | Solidago nemoralis                        | 0.623 | Coreopsis lanceolata       | 0.561 |
| Scirpus pendulus           | 0.595 | Zizea aurea                               | 0.583 | L espedeza capitata        | 0.442 |
| Scirpus validus            | 0.577 | Echinacea pallida                         | 0.361 | Coreopsis palmata          | 0.321 |
| Silphium terebinthinaceum  | 0.506 | Bromus kalmii                             | 0.333 | Desmodium canadense        | 0.188 |
| Silphium laciniatum        | 0.302 | Veronicastrum virginicum                  | 0.288 | Coreopsis tripteris        | 0.167 |
| Physostegia virginiana     | 0.256 | Silphium perfoliatum                      | 0.229 | Parthenium integrifolium   | 0.167 |
| Asclepias incarnata        | 0.235 | Parthenium integrifolium                  | 0.217 | Asclepias tuberosa         | 0.143 |
| Zizea aurea                | 0.223 | Hypericum pyramidatum                     | 0.167 | Allium stellatum           | 0.091 |
| Cicuta maculata            | 0.212 | Silphium laciniatum                       | 0.147 | Potentilla arguta          | 0.042 |
| Eleocharis ervthropoda     | 0.188 | Koeleria cristata                         | 0.127 | Solidago nemoralis         | 0.014 |
| Vernonia fasciculata       | 0.160 | Silphium terebinthinaceum                 | 0.103 | Dalea candidum             | 0.012 |
| Helenium autumale          | 0.152 | Baptisia leucantha                        | 0.093 | Antennaria plantaginifolia | 0.000 |
|                            | 0.125 | Pycpanthemum virginianum                  | 0.083 | Asclenias hirtella         | 0.000 |
| Tradoscantia obionsis      | 0.125 | Solidago spociosa                         | 0.000 | Astor sorioous             | 0.000 |
| Roltonia astoroidos        | 0.123 | Silobium integrifelium                    | 0.009 | Astragalus canadonsis      | 0.000 |
| Coreopsis tripteris        | 0.114 | Tradescantia obiensis                     | 0.007 |                            | 0.000 |
| Scirpus atrovirons         | 0.100 | Routoloua cuttinondula                    | 0.003 |                            | 0.000 |
| Bantisia leucantha         | 0.103 | Bycpanthemum pilosum                      | 0.056 |                            | 0.000 |
| Pychanthemum virginianum   | 0.070 | Carex bicknellii                          | 0.050 | Liatris aspera             | 0.000 |
| Veronicastrum virginiarium | 0.070 | Bantisia leucophaea                       | 0.000 | Rosa carolina              | 0.000 |
| Mimulus ringens            | 0.043 | Dalea candidum                            | 0.000 | Tradescantia obiensis      | 0.000 |
|                            | 0.042 | Euphorbia corollata                       | 0.000 | Bromus kalmii              | 0.000 |
|                            | 0.000 | Gentiana flavida                          | 0.000 | Desmanthus illinoensis     |       |
| Allium cernuum             | 0.000 | Gentiana puberulenta                      | 0.000 | Hypericum sphaerocarpon    |       |
| Asclenias sullivantii      | 0.000 | Hypericum sphaerocarpon                   | 0.000 | Panicum leibergii          |       |
|                            | 0.000 | Physicstogia virginiana                   | 0.000 | T anicum leibergi          |       |
|                            | 0.000 | Physiostegia virginiaria<br>Rosa carolina | 0.000 |                            |       |
|                            | 0.000 | Solidago graminifolia                     | 0.000 |                            |       |
| Gentiana andrewsii         | 0.000 | Solidago juncea                           | 0.000 |                            |       |
| Hypericum pyramidatum      | 0.000 |                                           | 0.000 |                            |       |
| Iris virginicus            | 0.000 | Cassia marilandica                        |       |                            |       |
| Juncus dudlevi             | 0.000 | Dodecatheon meadia                        |       |                            |       |
| Lobelia spicata            | 0.000 | Gentiana andrewsii                        |       |                            |       |
| l vsimachia quadriflora    | 0.000 | Helianthus rigidus                        |       |                            |       |
| Parthenium integrifolium   | 0.000 | Heuchera richardsonii                     |       |                            |       |
| Rosa carolina              | 0.000 | Liatris aspera                            |       |                            |       |
| Solidago riddellii         | 0.000 | Pedicularis canadensis                    |       |                            |       |
| Teucrium canadense         | 0.000 | Potentilla arguta                         |       |                            |       |
| Thalictrum dasvcaroum      | 0.000 | Sisvrinchium albidum                      |       |                            |       |
| Aster praealtus            |       | Solidago riddellii                        |       |                            |       |
| Bidens coronata            |       |                                           |       |                            |       |
| Eleocharis obtusa          |       |                                           |       |                            |       |
| Lycopus uniflorus          |       |                                           |       |                            |       |
| Rudbeckia fulgida          |       |                                           |       |                            |       |
| Rudbeckia triloba          |       |                                           |       |                            |       |
| Senecio pauperculus        |       |                                           |       |                            |       |

**Figure 4.** Box plots of the mean proportion of established species in each node that dispersed outside the node among the three dispersal potential classes in each habitat. In each case, differences among dispersal classes were not significant (Kruskal-Wallis).



**Table 4.** The mean proportion of established species of each dispersal type that dispersed to each consecutive ring surveyed outside the nodes within each habitat. Differences among dispersal types for each habitat type at each consecutive ring were not significant (Kruskal-Wallis).

| dispersal<br>ring | habitat | dispersal type |       |       |  |
|-------------------|---------|----------------|-------|-------|--|
|                   |         | 1              | 2     | 3     |  |
|                   | wet     | 0.387          | 0.384 | 0.574 |  |
| 15-20 m           | mesic   | 0.323          | 0.466 | 0.479 |  |
|                   | dry     | 0.454          | 0.526 | 0.250 |  |
|                   | wet     | 0.280          | 0.174 | 0.356 |  |
| 20-25 m           | mesic   | 0.228          | 0.250 | 0.375 |  |
|                   | dry     | 0.342          | 0.324 | 0.188 |  |
|                   | wet     | 0.126          | 0.050 | 0.091 |  |
| 25-30 m           | mesic   | 0.046          | 0.053 | 0.158 |  |
|                   | dry     | 0.292          | 0.304 | 0.188 |  |

## Conclusions

Dispersal from diversity nodes was not a viable strategy to increase species diversity evenly across the 426-ha site over a 10year period. However, the nodes were successful in introducing species locally where little seed was affordable or available, and these nodes now serve as a focus for seed collection efforts to support ongoing introductions elsewhere. Furthermore, some species did disperse outside the site to begin 'mini' single-species nodes of dispersal, but at densities too low to effectively sample, or to determine origin. Although many species can and will disperse effectively, 10 years is too short a period for this strategy to effectively increase plant diversity evenly across a large restoration site.

In general, species with higher dispersal potential were slightly less better at dispersing effectively within the local area outside the nodes, indicating that dispersal potential is not a reliable predictor of establishment success. Establishment success following dispersal is more likely a function of both seed provisioning and the local physical, chemical, and biological characteristics of the site. However, some species, independent of dispersal characteristics, were clearly better at successful establishment following dispersal than others. Where seed quantities are limited, these species would be good candidates for planting from seed at lower densities to naturally populate a site through successful recruitment. Those species that are poor at establishing as well as dispersal would be better introduced as greenhouse grown plugs, especially where little seed is available or affordable.

# References

Balvanera, P., A. B. Pfisterer, N. Buchmann, J. S. He, T. Nakashizuka, D. Raffaelli, and B. Schmid. 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters Biondini, M.E., J.E. Norland, C.E. Grygiel. 2011. Plant Richness-Biomass Relationships in Restored Northern Great Plains Grasslands (USA). International Journal of Ecology 2011, 1-13. Callaway, J. C., G. Sullivan, and J. B. Zedler. 2003. Species-rich plantings increase biomass and nitrogen accumulation in a wetland restoration experiment. Ecological Applications 13:1626-1639.

Cardinale, B. J., M. A. Palmer, and S. L. Collins, 2002, Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415:426-429. Duffy, J.E. 2009. Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment 7: 437-444. Hector, A., C. Philipson, P. Saner, J. Chamagne, D. Dzulkifli, M. O'Brien, J. L. Snaddon, P. Ulok, M. Weilenmann, G. Reynolds, H. C. J. Godfray. 2011. The Sabah Biodiversity Experiment: a long-term test of the role of tree diversity in restoring tropical forest structure and functioning. Philosophical Transactions of the Royal Society B: Biological Sciences 366:1582, 3303-3315. Hillebrand, H., B. Matthiessen. 2009. Biodiversity in a complex world: consolidation and progress in functional biodiversity research: Consolidation and progress in BDEF research. Ecology Letters 12:12, 1405.

Hooper, D. U., and P. M. Vitousek, 1997. The effects of plant composition and diversity on ecosystem processes, Science 277:1302-1305. Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer, and D. A. Wardle. 2005. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs 75:3-35. Howe, H.F. 1994. Managing Species Diversity in Tallgrass Prairie: Assumptions and Implications. Conservation Biology 8: 693-704. Isbell, F., P. B. Reich, D. Tilman, S. E. Hobbie, S. Polasky, S. Binder. 2013. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences 110:29, 11911-11916

Isbell, F., V. Calcagno, A. Hector, J. Connolly, W.S. Harpole, P.B. Reich, M. Scherer-Lorenzen, B. Schmid, D. Tilman, J. van Ruijven, A. Weigelt, B.J. Wilsey, E.S. Zavaleta, M. Loreau. 2011. High plant diversity is needed to maintain ecosystem services. Nature 477, 199-202. Lambers, J. H. R., W. S. Harpole, D. Tilman, J. Knops, and P. B. Reich. 2004. Mechanisms responsible for the positive diversity-productivity relationship in Minnesota grasslands. *Ecology Letters* 7:661-668.

Larson, D.L., J.B. Bright, P. Drobney, J.L. Larson, N. Palaia, P.A. Rabie, S. Vacek, and D. Wells. 2011. Effects of planting method and seed mix richness on the early stages of tallgrass prairie restoration. Biological Conservation 144: 3127-3139. Midgley, G.F. 2012. Biodiversity and Ecosystem Function. Science 335:6065, 174-175.

Morgan, J.P., D.R. Collicutt, and J.D. Thompson. 1995. Restoring Canada's Native Prairies: A Practical Manual. Prairie Habitats. Morin, X., L. Fahse, M. Scherer-Lorenzen, H. Bugmann. 2011. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters, 14: 1211–1219. Naeem, S. 2006. Biodiversity and ecosystem functioning in restored ecosystems: Extracting principles for a synthetic perspective. Pages. 210-237 in D. Falk, M. Palmer, and J. Zedler, editors. Foundations of restoration ecology, Island Press, Washington, DC, USA.

Packard, S., 1997. Interseeding. pp. 163-192. In S. Packard and C.F. Mutel (eds.) The Tallgrass Restoration Handbook for Prairies, Savannas, and Woodlands, Island Press, Washington, D.C. Polley, H. W., J.D. Derner, and B.J. Wilsey. 2005. Patterns of Plant Species Diversity in Remnant and Restored Tallgrass Prairies. Restoration Ecology 13: 480–487 Quijas, S., B. Schmid, P.Balvanera. 2010. Plant diversity enhances provision of ecosystem services: A new synthesis. Basic and Applied Ecology 11:7, 582-593. Quijas, S., L. E. Jackson, M. Maass, B. Schmid, D. Raffaelli, P. Balvanera. 2012. Plant diversity and generation of ecosystem services at the landscape scale: expert knowledge assessment. Journal of Applied Ecology **49**:4, 929-940.

Rowe, H.I. 2010. Tricks of the Trade: Techniques and Opinions from 38 Experts in Tallgrass Prairie Restoration. Restoration Ecology 18: 253–262. Schwartz, M. W., C. A. Brigham, J. D. Hoeksema, K. G. Lyons, M. H. Mills, and P. J. van Mantgem. 2000. Linking biodiversity to ecosystem function: Implications for conservation ecology. Oecologia 122:297-305. Symstad, A.J., J.L. Jonas. 2011. Incorporating Biodiversity Into Rangeland Health: Plant Species Richness and Diversity in Great Plains Grasslands. Rangeland Ecology & Management 64:6, 555-572. Tilman, D., P. B. Reich, and J. M. H. Knops. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629-632. Tilman, D., P. B. Reich, F. Isbell. 2012. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences 109:26, 10394-10397. Turnbull, L.A., J. M. Levine, M. Loreau, A. Hector. 2012. Coexistence, niches and biodiversity effects on ecosystem functioning. Ecology Letters (2013) 16: 116-127. Webster, C.R., D.J. Flaspohler, R.D. Jackson, T.D. Meehan, C. Gratton. 2010. Diversity, productivity and landscape-level effects in North American grasslands managed for biomass production. Biofuels 1:3, 451-461. Zedler, J. B., J. C. Callaway, and G. Sullivan. 2001. Declining biodiversity: Why species matter and how their functions might be restored in Californian tidal marshes. BioScience 51:1005-1017.

